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Abstract. The core of a monotonic transferable utility (TU) game is shown to be
the set of prices that incentivize each individual to demand the grand coalition in a
market demand problem in which the goods being demanded are coalitions viewed
as excluable public goods. It is also shown that the core is the intersection of
superdifferentials evaluated at the grand coalition of the covers of person-specific
TU games derived from the original game. These characterizations of the core
demonstrate how a market demand approach to coalition formation in the spirit
of Baldwin and Klemperer [4, 5] is related to the approach to the core using the
cover of a TU game and it superdifferential at the grand coalition developed by
Shapley and Shubik [25], Aubin [3], and Danilov and Koshevoy [8].
Mathematics Subject Classifications. Primary: 91A12. Secondary: 46N10, 91B18,
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1. Introduction

In this article, we provide a novel interpretation of the core of a TU game us-
ing tools adapted from the theory of discrete convex optimization applied to the
analysis of a market demand problem in which coalitions are thought of as being
excludable public goods. In doing this, we build on an approach to the core by
Shapley and Shubik [25], Aubin [3], and Danilov and Koshevoy [8] that employs
the cover of a TU game and on work by Baldwin and Klemperer [4, 5] on the
demand for indivisible private goods, which they have applied to a problem of
partitioning individuals into coalitions.

For each possible coalition of the set of individuals N = {1, . . . ,n}, a trans-
ferable utility (TU) game v specifies the total utility—the coalition’s value—that
can be shared among its members [16, 19]. We interchangeably regard a coalition
as being a subset S of N and as the vertex 1S of {0,1}n whose ith component is
1 if and only if i ∈ S, and use {0,1}n as the domain of v. A core allocation di-
vides the total utility of the grand coalition N among the n individuals in such a
way that no subgroup can receive a larger total utility on its own. A core alloca-
tion can be thought of as providing a way of fairly dividing the grand coalition’s
value. The core is defined by a system of linear equalities and inequalities. Nec-
essary and sufficient conditions for the nonemptyness of the core were developed
by Bondareva [7] and Shapley [22] using linear programming techniques.

A coalition can be thought of as being an excludable public good [21]. A
public good is non-rivalrous in consumption; that is, the consumption of this good
by one person does not preclude its consumption by the other individuals. In
contrast, with a private good, a unit of this good consumed by one individual
cannot be consumed by anybody else. A public good can be either excludable or
non-excludable. If it is non-excludable, nobody can be prevented from consuming
it. On the other hand, if it is excludable, it is possible to limit its consumption to
any group of individuals. While all those who are not excluded consume a public
good in common, they need not value it in the same way.

We show that the core can be characterized using market demands for coali-
tions viewed as being excludable public goods. Individual j is paid a price p j for
joining a coalition. The cost of coalition S is the sum of the prices paid to its mem-
bers. If individual i is a member of coalition S, the benefit of S to him is the sum of
the value of S and the price pi paid to himself for belonging to it; this benefit is in-
stead 0 if i does not belong to S. Faced with the prices p = (p1, . . . , pn), i demands
those coalitions that maximize his net benefit—the benefit less the cost. We show
that if p is nonnegative and its components sum to the value of the grand coalition,
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then p is in the core if and only each individual demands the grand coalition at
these prices when the game is monotonic. Thus, the prices that incentivize every
individual to demand the grand coalition are the core allocations, provided that
such prices exist.

We also relate this characterization of the core to the superdifferential of the
cover of v. The cover of v is the smallest linearly homogeneous, concave, real-
valued function on the nonnegative orthant Rn

+ that is larger than v when restricted
to {0,1}n. The cover of a TU game was first introduced by Shapley and Shubik
[25], who proved that the core is nonempty if and only if the value of the cover
at 1N is equal to v(1N). Subsequently, Aubin [3] showed that when the core is
nonempty, it is equal to the superdifferential of the cover at 1N . We call this pair of
results the Shapley–Shubik–Aubin Theorem.1 We also show that the set of prices
that induce individual i to demand the grand coalition is the superdifferential at
1N of the cover of a person-specific TU game. The core is the intersection of these
superdifferentials.

Aubin [3] established the Shapley–Shubik–Aubin Theorem as a corollary to
an analogous theorem for fuzzy games [2, 3] in which individuals have degrees of
participation in a coalition, but he only sketched the proof. We provide a complete
direct proof of this theorem.

In a model with multiple indivisible private goods, Baldwin and Klemperer
[4, 5] used tropical geometry [14] to investigate the existence of prices for which
aggregate demand is equal to the supply of an arbitrary bundle of the goods. They
showed that their market demand analysis can be applied to the problem of parti-
tioning a set of individuals into coalitions that exhibit the stability properties of the
core. They did not regard coalitions as being public goods; instead, they treated
the individuals as being indivisible private goods which are demanded by special
agents who form the coalitions.

In Section 2, we introduce TU games and the core. In Section 3, we show
that the core consists of the prices that induce each individual to choose the grand
coalition in a coalition market demand problem. In Section 4, we formally state
and prove the Shapley–Shubik–Aubin Theorem about the existence and character-
ization of the core of a TU game. This is followed in Section 5 by our demonstra-
tion that the market demands can be used to characterize the core as the intersec-
tion of the superdifferentials at the grand coalition of person-specific TU games.

1A similar approach to characterizing the core has been employed by Danilov and Koshevoy
[8]. Related constructions have been used to study the core of a game without side payments. See,
for example, [3] and [6].
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We discuss related literature in Section 6. Finally, in Section 7, we offer some
concluding remarks.

2. The Core of a TU game

The set of individuals is N = {1, . . . ,n}, where n≥ 2. A coalition is a subset of N.
The coalition N is the grand coalition. As noted above, for the coalition S ⊆ N,
we can identify S with the vector 1S ∈ Rn whose ith coordinate is 1 if i ∈ S and is
0 otherwise. With this representation of a coalition, the set of possible coalitions
are the vertices of the Boolean hypercube {0,1}n.

A characteristic function is a function v : {0,1}n → R for which v(1∅) = 0.
The value v(1S) is the total utility that may be shared among the members of S.
In other words, utility is transferable. We refer to v(1S) as the coalition’s value.
For a fixed set of individuals N, a transferable utility (TU) game is defined by its
characteristic function v.

An allocation is a vector x ∈Rn specifying the utility of each of the n individ-
uals. The core C(v) of the TU game v is the set of all allocations for which

x ·1N = v(1N) (1)

and
x ·1S ≥ v(1S), ∀S⊆ N. (2)

Informally, a core allocation divides the value of the grand coalition among all of
the individuals in such a way that any subgroup of individuals receives no less in
total than what it could achieve by itself. A core allocation is undominated in the
sense that no coalition acting on its own can provide larger utilities to all of its
members.

The core is a compact convex polyhedron whose dimension is at most n− 1.
Bondareva [7] and Shapley [22] have identified a necessary and sufficient con-
dition for a TU game to have a nonempty core in terms of balanced families of
coalitions. A family S of coalitions is balanced if there exists for each S ∈S a
balancing coefficient λS ∈ (0,1] for which ∑S∈S λS1S = 1N . Equivalently, a fam-
ily S is balanced if the vector 1N is in the positive cone generated by {1S |S∈S }.
A TU game v is balanced if for every balanced family S and associated balancing
coefficients {λS | S ∈S },

∑
S∈S

λSv(1S)≤ v(1N). (3)

Theorem 1 is the Bondareva–Shapley Theorem.
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Theorem 1. A TU game v has a nonempty core if and only if it is balanced.

We restrict attention to monotonic TU games. Monotonicity is the requirement
that

v(1S)≤ v(1T ), ∀S,T ⊆ N such that S⊆ T.

Because v(1∅) = 0, monotonicity implies that values are nonnegative,

v(1S)≥ 0, ∀S⊆ N.2

For further discussion of cores of TU games, see [16, 19].

3. Market Demands for Coalitions

We now formulate the problem of selecting a coalition as a problem of market de-
mand for an excludable public good. While a coalition is only of value to someone
if he is a member of it, the coalition itself is a public good.

Each individual is paid a price for joining a coalition. Prices are denominated
in units of utility. Let p = (p1, . . . , pn) ∈ Rn be the vector of these prices, where
p j is the price paid to individual j for being in a coalition. At this stage, we
do not preclude some of these prices from being negative. However, we shall
subsequently require them to be nonnegative. Thus, for any coalition S ⊆ N, the
outlay (the “cost”) required to form this coalition at the prices p is

O(S, p) = p ·1S. (4)

For any i ∈ N and any S⊆ N, the benefit (the “utility”) of S for i is

U i(S, p) =

{
v(1S)+ pi, if i ∈ S;
0, if i 6∈ S.

(5)

If i ∈ S, his benefit is the sum of the value v(1S) of S and the amount being paid
to himself for being part of this coalition. He gets no benefit from any coalition to
which he does not belong.

For given prices, i chooses the coalitions that maximize his net benefit:

max
S⊆N

[
U i(S, p)−O(S, p)

]
. (6)

2Only Lemma 3 and, hence, Theorem 4 use monotonicity in an essential way. For our other
results, nonnegativity of v is sufficient.
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His coalition demand at these prices is

Di(p) = argmax
S⊆N

[
U i(S, p)−O(S, p)

]
. (7)

The optimization problem (6) is not meant to describe the actual way in which
a coalition is formed. Rather, it is a hypothetical construct designed to provide an
alternative interpretation of the core of a TU game. An alternative interpretation
of the coalition market demand problem (6) in which i does not make payments
to himself is provided in Section 5.

We are interested in determining whether there exist nonnegative prices p∗

such that p∗ ·1N = v(1N) and Di(p∗) = N for all i ∈ N. Provided that v is mono-
tonic, Theorem 2 shows that the set of all such prices is the core of v.

Theorem 2. Let v be a monotonic TU game. If p∗ is nonnegative with p∗ · 1N =
v(1N), then p∗ ∈C(v) if and only if N ∈ Di(p∗) for all i ∈ N.

Proof. (a) Suppose that p∗ ∈ C(v). Because, by assumption, p∗ · 1N = v(1N),
equation (2) with x = p∗ is equivalent to

0 = v(1N)− p∗ ·1N ≥ v(1S)− p∗ ·1S, ∀S⊆ N. (8)

By (4) and (5) we know that

v(1N)− p∗ ·1N =U i(N, p∗)−O(N, p∗)− p∗i

and hence for any i ∈ N, the inequality in (8) is equivalent to

U i(N, p∗)−O(N, p∗)≥ v(1S)+ p∗i − p∗ ·1S, ∀S⊆ N. (9)

If i∈ S, the right-hand side of (9) is U i(S, p∗)−O(S, p∗). Because v is monotonic,
v(1S) ≥ 0. Thus, if i 6∈ S, because both v(1S) and p∗i are nonnegative, the right-
hand side of (9) is no less than U i(S, p∗)−O(S, p∗). Hence, N ∈ Di(p∗).

(b) Suppose that N ∈ Di(p∗) for all i ∈ N. Because (2) trivially holds when
S = ∅, we only need to show that it also holds for the nonempty coalitions. By
(7), we have

U i(N, p∗)−O(N, p∗)≥U i(S, p∗)−O(S, p∗)

for all i ∈ N and all S ⊆ N. Consider any S 6=∅ and any i ∈ S. Then, U i(S, p∗) =
v(1S)+ p∗i and so

v(1N)+ p∗i − p∗ ·1N ≥ v(1S)+ p∗i − p∗ ·1S,
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which implies that
v(1N)− p∗ ·1N ≥ v(1S)− p∗ ·1S.

Given our assumption that v(1N) = p∗ ·1N , we have

0≥ v(1S)− p∗ ·1S,

which confirms that (2) holds for this S. Because S 6= ∅ was chosen arbitrarily
and (1) holds by hypothesis, we conclude that p∗ is in the core of v.

We have thus shown that the core, when it exists, is the set of prices that in-
duce each individual to choose the grand coalition in the coalition market demand
problem (6) when prices are normalized to sum to the value of the grand coalition.

4. The Shapley–Shubik–Aubin Theorem

In this section, we formally state and prove the Shapley–Shubik–Aubin Theorem.
We begin by generalizing the concept of balanced families discussed in Sec-

tion 2 in the following way. For x ∈ Rn
+, a balancing set for x is a collection

Lx = {λS ≥ 0}∅6=S⊆N of nonnegative coefficients indexed by the coalitions such
that

x = ∑
S⊆N
S 6=∅

λS 1S.

Note that for x = 1∅ = (0,0, . . . ,0), the balancing coefficients must all be 0. Let
Lx be the set of all balancing sets for x. For the game v : {0,1}n→ R, the cover
of v [25] is the function fv : Rn

+→ R defined by setting

fv(x) = sup
Lx∈Lx

∑
S⊆N

λS v(1S), ∀x ∈ Rn
+. (10)

It is easy to see that the collection of balancing sets Lx is a compact subset of
R2n−1, so the sup exists and is achieved. Note that this construction implies that

v(1S)≤ fv(1S), ∀S⊆ N.

Informally, the function fv defined in (10) is the smallest linearly homogeneous,
concave, real-valued function on Rn

+ that is larger than v on {0,1}n.
A function f : Rn

+→ R is concave if

α f (p)+(1−α) f (q)≤ f (α p+(1−α)q), ∀α ∈ [0,1], ∀p,q ∈ Rn
+,
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and it is linearly homogeneous if

f (kx) = k f (x), ∀k ∈ R+, ∀x ∈ Rn
+.

We now demonstrate that fv satisfies these two properties.

Lemma 1. The cover fv of v is concave.

Proof. Suppose that the balancing set for p that achieves the value fv(p) is {λS}
and the balancing set for q that achieves fv(q) is {γS}. Then, we know that p =

∑S⊆N λS 1S and q = ∑S⊆N γS 1S. Thus,

α p+(1−α)q = ∑
S⊆N

α λS 1S + ∑
S⊆N

(1−α)γS 1S

= ∑
S⊆N

(α λS +(1−α)γS)1S,

which shows that {α λS +(1−α)γS} is a balancing set for α p+(1−α)q. By the
definition of fv, we know that

fv(α p+(1−α)q)≥ ∑
S⊆N

(α λS +(1−α)γS)v(1S)

= ∑
S⊆N

α λS v(1S)+ ∑
S⊆N

(1−α)γS v(1S)

≥ α fv(p)+(1−α) fv(q).

Lemma 2. The cover fv of v is linearly homogeneous.

Proof. The result for the case in which k = 0 follows that fact that fv(1∅) = 0.
For k > 0, it is obvious that Lx = {λS} is a balancing set for x if and only if
Lkx = {k λS} is a balancing set for kx. It then follows that

fv(kx) = sup
Lkx∈Lkx

{k λS}= k sup
Lx∈Lx

{λS}= k fv(x).

Because fv is concave and linearly homogeneous, it is also continuous. Asso-
ciated with any concave function are its supergradients and superdifferentials [20].
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A vector x∗ ∈Rn is a supergradient of a continuous concave function f : Rn
+→R

at x if
f (z)≤ f (x)+ x∗ · (z− x), ∀z ∈ Rn

+.

A supergradient exists at every point in the relative interior of the domain of a
concave function [20, Theorem 23.4]. The superdifferential of f at x, denoted
∂ f (x), is the set of supergradients of f at x. This superdifferential is a compact
convex set. If f is differentiable at x, then the unique supergradient is simply the
gradient.

Theorem 3 is the Shapley–Shubik–Aubin Theorem.

Theorem 3. Let v be a monotonic TU game and fv be the cover of v. (a) C(v) 6=∅
if and only if v(1n) = fv(1N). (b) If C(v) 6=∅, then C(v) = ∂ fv(1N).

Proof. The proof strategy is as follows. First, we show that C(v) =∅ if v(1N) 6=
fv(1N). Second, we show that if v(1N) = fv(1N), then ∂ fv(1N)⊆C(v). Third, we
show that if v(1N) = fv(1N), then C(v) ⊆ ∂ fv(1N). Because the superdifferential
of a concave function is nonempty at each point in its domain, the second and
third steps in the proof imply that C(v) 6=∅ if v(1N) = fv(1N).

(i) Suppose that v(1N) 6= fv(1N). Then, for some balancing set {λS} for 1N ,
we must have v(1N) < ∑S⊆N λS v(1S). The collection {S |λS > 0} thus forms a
balanced set that violates (3) and, hence, by Theorem 1, we know that v has an
empty core.

(ii) Now suppose that v(1N) = fv(1N). Let p ∈ ∂ fv(1N). We show that p is in
the core of v.

From the definition of a supergradient, we have for all z ∈ Rn
+ that

fv(z)≤ fv(1N)+ p · (z−1N),

which implies that
fv(z)− p · z≤ fv(1N)− p ·1N . (11)

We now show that the right-hand side of (11) is equal to 0. By choosing
z = 1∅ = (0,0, . . . ,0), (11) implies that

0≤ fv(1N)− p ·1N . (12)

Now consider z = 21N . Because fv is linearly homogeneous, we have that

fv(21N) = 2 fv(1N) (13)
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and, therefore,
fv(21N)− p ·21N = 2[ fv(1N)− p ·1N ]. (14)

Equations (11)–(14) jointly imply that

0≤ 2[ fv(1N)− p ·1N ]≤ fv(1N)− p ·1N ,

which proves that fv(1N)− p ·1N = 0. Hence, (1) holds for the vector p because,
by assumption, fv(1N) = v(1N).

Because fv(1N)− p ·1N = 0, (11) reduces to

fv(z)− p · z≤ 0

for all z ∈ Rn
+. Choose z = 1S for some coalition S. From the construction of fv,

we know that fv(1S)≥ v(1S)≥ 0 and, hence, that

v(1S)− p ·1S ≤ fv(1S)− p ·1S ≤ 0.

Therefore,
v(1S)≤ p ·1S,

which establishes (2) for the vector p confirming that p ∈C(v).
(iii) Finally, suppose that v(1N) = fv(1N)and p ∈C(v). We need to show that

p ∈ ∂ fv(1N). Consider any z ∈ Rn
+. By the definition of fv in (10), there exists a

balancing set {λS} for z such that

fv(z) = ∑
S⊆N

λSv(1S).

We then have that

p · z = p · ∑
S⊆N

λS1S = ∑
S⊆N

λS(p ·1S)≥∑λsv(1S) = fv(z), (15)

where the inequality follows because p is in the core and so satisfies (2). Because
p is in the core, it also satisfies (1). Hence, p ·1N = v(N) = fv(1N). Using (15), it
then follows that

fv(1N)− p ·1N + p · z≥ fv(z)

or, equivalently,
fv(1N)+ p · (z−1N)≥ fv(z),

which shows that p ∈ ∂ fv(1N).
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5. Market Demands and the Core

In Section 3, we showed how to interpret vectors in the core of a TU game v as
prices paid to individuals for their participation in a coalition that incentivize each
individual to choose the grand coalition in a market demand game in which the
coalitions are treated as excludable public goods. In Section 4, we established
the Shapley–Shubik–Aubin Theorem, which identifies when the core is nonempty
and characterizes it in terms of the superdifferential of the cover of v. In this
section, we relate these two characterizations of the core.

Given a monotonic TU game v and an individual i∈N, we define a new mono-
tonic TU game vi by, for each S⊆ N, setting

vi(1S) =

{
v(1S), if i ∈ S;
0, if i /∈ S.

(16)

The game vi gives individual i the value of any coalition to which he belongs and
nothing from the formation of a coalition that does not include him.

Note that the coalition market demand problem (6) can be equivalently written
as

max
S⊆N

[
vi(1S)− ∑

j∈S\{i}
p j

]
. (17)

Thus, for any coalition S in which i is a member, i can be thought of as keeping
for himself the value of S net of the payments made to the other members of S for
their participation. If i does not belong to S, he pays its members to form S, but
receives no benefit himself.

Lemma 3. Let v be a monotonic TU game. The game vi defined in (16) has a
nonempty core for every individual i ∈ N.

Proof. Let pi = (pi
1, . . . , pi

n) be the vector

pi
j =

{
v(1N), if j = i;
0, if j 6= i.

It follows from the the definition of vi and the monotonicity of v (and, hence, of
vi) that pi is in the core of vi.
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For each i ∈ N, let

ψ
i(1N) = {p ∈ Rn | p≥ 0, N ∈ Di(p), and p ·1N = v(1N)}.

The set ψ i(1N) consists of the prices that incentivize individual i to demand the
grand coalition in the coalition market demand problem (6) or, equivalently, (17).
We associate with vi its cover fvi : Rn

+→ R as in (10). As we now show, the core
of vi is both the set ψ i(1N) and the superdifferential of fvi at 1N .

Theorem 4. Let v be a monotonic TU game. For any i ∈ N, let vi be the TU game
defined in (16) and fvi be its cover. Then,

C(vi) = ψ
i(1N) = ∂ fvi(1N).

Proof. Given how vi is defined in (16), for all S ⊆ N, U i(S, p)−O(S, p) in (5)
takes on the same value whether it is defined using v or vi. Thus, the proof that
C(vi)⊆ ψ i(1N) is exactly the same as part (a) of the proof of Theorem 2.

Now, suppose that p ∈ ψ i(1N). By hypothesis, p satisfies (1). It remains to
show that it also satisfies (2). There are two cases. First, if i /∈ S, then p ·1S ≥ 0 =
vi(S), where the inequality follows from the assumption that p ≥ 0. If i ∈ S, part
(b) of the proof of Theorem 2 applies and, hence, (2) holds.

We have shown that C(vi) = ψ i(1N). By Lemma 3, C(vi) 6= ∅. Hence, by
Theorem 3, C(vi) = ψ i(1N) is also equal to ∂ fvi(1N).

For a monotonic TU game v, we know from Theorem 2 that the core is the
set of prices that induce each individual to demand the grand coalition in their
coalition market demand problems. This set is ∩i∈Nψ i(1N). Thus, it follows im-
mediately from Theorem 4 that the core is the intersection of the superdifferentials
of the covers fvi associated with the person-specific TU games vi.

Theorem 5. Let v be a monotonic TU game. For every i ∈ N, let vi be the TU
game vi defined in (16) and fvi be its cover. Then,

C(v) =
n⋂

i=1

∂ fvi(1N). (18)

Theorem 5 does not assume that the core is nonempty. If it is empty, then
there are no prices that induce everybody to demand the grand coalition, and so
the intersection of the superdifferentials in (18) is empty.
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6. Remarks on the Literature

Shapley and Shubik [25] introduced the concept of the cover of a TU game v and
used it to establish part (a) of Theorem 3. They did not offer a characterization
of the core of v (when it exists) in terms of the superdifferential of the cover of
v at the grand coalition. Our proof of part (a) of Theorem 3 makes use of this
characterization.

Aubin [2, 3] was primarily concerned with with the existence and characteri-
zation of the core for cooperative fuzzy games. In the transferable utility case, a
fuzzy game is defined by a linearly homogenous function v that assigns a value
to each vector τ ∈ [0,1]n. The ith component of τ is the degree to which indi-
vidual i participates. Aubin used the linearly homogenous extension of v to Rn

+

to determine when the core of a fuzzy TU game is nonempty and to characterize
a nonempty core in terms of the superdifferential of this function at 1N . For a
standard TU game v, he showed that its cover restricted to [0,1]n can be thought
of as being a fuzzy TU game, from which his results about the core of v follow.

Shapley and Shubik [25, p. 16] have noted that the balancing weight λS can
be interpreted as the degree of participation of the members of S in this coalition,
thereby connecting balancedness with fuzzy games. With this interpretation, the
maximization problem (10) defining the cover of v identifies how each individ-
ual’s participation in each coalition of which he is a member should be optimally
assigned.

Danilov and Koshevoy [8] analyzed TU games using an approach that is closely
related to that of Aubin [3]. Using Choquet integrals, they extended a TU game
v to a linearly homogenous function ṽ on all of Rn that agrees with v at each of
the vectors 1S. They showed that if ∂ ṽ(1N) exists, then it is equal to the core of v.
For a standard TU game, in Aubin’s approach, the analogue to ṽ is the cover fv,
which is linearly homogenous and concave by construction. In contrast, ṽ need
not be concave, and so a supergradient at 1N need not exist. Danilov and Ko-
shevoy focused on games that are supermodular.3 Shapley [24] called such games
convex. Convex games always have a nonempty core. For convex games, Danilov
and Koshevoy proved that ṽ is concave and the superdifferential of ṽ at 1N is equal
to the core. They also provided a geometric description of the core in terms of
Minkowski sums and differences of the cores of certain simple games.

Baldwin and Klemperer [4, 5] modeled coalition formation as the solution
to a market demand problem. Coalitions are allowed to form only if they result

3See [12] for a definition and some other properties that are equivalent to supermodularity.
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in a pre-specified partition N of the set of individuals N. As is the case here,
there is a price vector p whose jth component is the price paid to individual j
for joining a coalition. Associated with each nonempty coalition S in N , there
is a coalition agent who must choose between S and the empty set. If this agent
chooses S, he keeps its value (which in the Baldwin–Klemperer model is the sum
of the individual values of the members of S for that coalition) less the sum of
the prices paid to the members of S for joining S and transferring their values to
the coalition agent. Each person is thought of as a private person-good that can
only be “consumed” in the quantity 0 or 1 by one coalition agent. Given N , the
aggregate demand on the part of all of the coalition agents for any individual j
is simply the demand by the coalition agent for the element in N that j belongs
to. Baldwin and Klemperer investigated whether there exist prices p such that the
coalition agents demand the partition N . In our model, there are no coalition
agents and the demand is for an excludable public good (the coalition), not for
private goods (the individuals viewed separately).

The model of coalition market demand considered by Baldwin and Klemperer
[5] is a special case of their model of the demand for indivisible private goods. A
bundle of k private goods is a k-tuple in Zk. Their unimodularity theorem provides
a necessary and sufficient condition for any bundle of goods to be the aggregate
consumer demand at some prices.4 A partition of N in the coalition formation
problem corresponds to a bundle of goods in the market demand problem.

In a competitive equilibrium for divisible private goods, prices equate the de-
mand and supply (aggregated over all consumers and firms) of each good [1]. The
equilibria considered by Baldwin and Klemperer [5] are competitive equilibria for
an economy with indivisible private goods in which each of the goods is in fixed
supply. Danilov, Koshevoy, and Murota [9] and Murota [17] have investigated
when a competitive equilibrium exists for indivisible private goods when there is
also a divisible private good (money) and supply is price sensitive. For simplicity,
we only describe the fixed-supply case.

The sufficient conditions in [9, 17] for the existence of an equilibrium with
indivisible private goods are developed using a convexified economy in which
constructions related to the cover of a TU game are employed. In particular, the
real-valued utility function Ui of individual i defined on Zk is concavified by a
function Ũi on Rk that satisfies the properties of a cover except for linear ho-
mogeneity. Murota’s [17] sufficient condition for an equilibrium requires that the

4See [4, 5] for a definition of unimodularity. An alternative proof of Baldwin and Klemperer’s
unimodularity theorem using linear programming has been developed by Tran and Yu [26].
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concavified utility function agrees with the original utility function on Zk, whereas
in the Aubin–Shapley–Shubik Theorem, agreement is only required at 1N . An
equilibrium price vector is a common supergradient of (i) all of the individual
utility functions at their individual bundles and (ii) the sum of the utility functions
at the aggregate bundle [17, Sec. 11.4]. In contrast, for us, the supergradients are
all evaluated at the same point, 1N . This contrast is of fundamental importance. In
the indivisible private goods case, the Minkowski sum of the individual demands
at given prices need not be a discrete convex set [17, Sec. 11.2], which is why
conditions like those used in [5, 9, 17] are needed to ensure that an equilibrium
exists. In our problem, there is no analogue of an aggregate demand, so this issue
does not arise.

Lindahl [13] proposed a market-like mechanism for allocating divisible private
and public goods in which the price for a private good is common to everyone,
whereas the prices for a non-excludable public good are personalized and sum to
the production price. In a Lindahl equilibrium, prices are such that the demand
and supply of each good, both private and public, are equated. In equilibrium,
each individual can demand different quantities of a private good, but they must
all demand the same quantity of a public good. Fabre-Sender [10] and Foley [11]
have shown that the existence of a Lindahl equilibrium is equivalent to the exis-
tence of a competitive equilibrium in a model with only private goods by treating
the consumption of a public good by an individual as a private good that only this
person demands (see [15]). Private person-goods play a somewhat similar role in
Baldwin and Klemperer’s model of coalition formation in that such goods are only
demanded by one coalition agent. In our framework, a public good is a coalition,
which is an indivisible good. For the coalition S, its price is the outlay O(S, p). In
contrast to Lindahl pricing, this price is not personalized.

7. Conclusion

In this article, we have shown that the core of a monotonic TU game can be
interpreted as being the set of prices that induce each individual to choose the
grand coalition in a market demand problem in which the coalitions are interpreted
as being excludable public goods. We have also shown that the core is equal to
the intersection of the superdifferentials at 1N of the covers of person-specific
TU games derived from the original game. We have therefore demonstrated how
a market demand approach to coalition formation in the spirit of Baldwin and
Klemperer [4, 5] is related to the approach to the core using the cover of a TU
game and its superdifferential at the grand coalition developed by Shapley and
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Shubik [25], Aubin [3], and Danilov and Koshevoy [8].
Our analysis also sheds some light on the problem of partitioning individuals

into coalitions and on the core of a non-transferable utility (NTU) game. In the
case of coalition partitions, our approach can be applied to the problem of incen-
tivizing individuals to sort themselves into the coalitions in some pre-specified
partition N . As noted in Section 6, Baldwin and Klemperer [4, 5] used a market
demand approach to this problem in which coalition agents are the demanders and
the goods are private person-goods. We can instead view each coalition S in the
partition as an excludable public good and, as we have done here, regard the price
p j as being the amount that individual j must be paid to join a coalition. With
this interpretation, the problem is to find a price vector p with the property that
the individuals assigned to S by the partition N demand S at these prices. This
can be done by reinterpreting S as being the grand coalition for the members of S
and replacing v by its restriction to S. By Theorem 5, the core of this subgame is
given by (18), but with the intersection only applying to members of S.

With a TU game, v(1S) is a scalar—the aggregate utility that can be divided
among the individuals in the coalition S should it form. With an NTU game,
v(1S) is instead the vectors of individual utilities that are achievable with S. As is
the case here, for an NTU game, we can regard a coalition as an excludable public
good. However, we cannot use (5) to define the utility of S for individual i because
v(1S) is not a scalar. Nevertheless, our analysis can be applied to an associated TU
game in which the utility vectors in v(1S) are weighted and summed. Specifically,
as proposed by Shapley [23], for the NTU game v, we can associate with it a
TU game using a weight vector w = (w1, . . .wn). This game has a characteristic
function vw for which vw(1S) is the maximum value of w · u for u ∈ v(1S). In
effect, the set v(1S) is expanded so that its upper boundary is given by the utility
vectors whose w-weighted sum is equal to vw(1S) . That is, it is supposed that
“fictitious transfers” can take place on a one-to-one basis once utilities have been
rescaled using the weights w. The value vw(1S)+ pi can be used in (5) to define
i’s utility for any coalition S that he is a member of. An allocation in the core of
vw need not be in the core (expressed in the non-weighted utilities) of the original
NTU game. Various conditions have been developed that ensure that it is for some
choice of the weights. However, in general, this procedure only identifies a subset
of an NTU game’s core when it is nonempty.5 It is an open question as to whether
weighted-utility TU games can be used to characterize the core of an NTU game,

5Aubin [3] used the superdifferential at v(1N) of a fuzzy version of vw for an appropriate
choice of weights w to identify these core allocations.
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not just a subset of it.6
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